
Economy Informatics, vol. 9, no. 1/2009            13 
 

Graph Representation of Declarative Languages as a Variant of Future 
Formal Specification Language 

 
Ian ORLOVSKI 

Technical University of Moldova, Chisinau, Moldova 
orlovski@yandex.com 

 
The paper includes brief review of formal specification languages, requirements and ideas for 
possible future developments. At the same time focusing attention to the languages based on 
first-order logic theory. For determining possible evolution directions of the existing 
specification methods we present generalized set of current and assumed requirements for 
systems of formal specification. As a potential solution for some lacks elimination concerned 
with specifications representation, was proposed an approach to graph representation of 
declarative languages. Was introduced and sight for future of specification languages as a 
result of current methods integration. 
Keywords: formal specification, graph representation, knowledge representation, formal 
methods 
 

Existing approaches and languages 
Model languages are widely used in a 

modern systems development life cycle. One 
of the most known of then is UML language 
which oriented on system modeling by 
business-users. Graphical representation is 
one of the main advantages of UML, but 
from the other side, this language among 
others points of criticism has a principal 
problem consisting in lack of a base formal 
theory. As an alternate path of evolution, was 
developed a direction of formal specification 
languages. These languages allow designing 
mathematical models of the describing 
system. In addition of this at the last time 
was developed an approach of application 
domain oriented programming (for example 
DSL). This approach guess for simplify of 
complex systems developing to write own 
domain oriented language, which, in 
particularly, can be a specification language. 
Formal specification language consists of 
three components: syntax, semantics and 
proof theory (or inference engine). For 
systems based on formal specifications 
languages and intended for systems design 
were determined next purposes: design of 
requirements, architecture, specifications; 
verifying of designed model; 
intercommunication of developers in the 
design process; reusing of well formulated 
specification elements and other. Different 

languages were developed for a broad range 
of system types. In this paper we narrow 
research area on software information 
systems direction, which is actual for 
programmers, system analyst, testers and 
other roles included in software development 
lifecycle. 
Exists wide range of theories which were 
selected as base of specification languages: 
algebraic (for example CASL, OBJ) or 
logical approach, set theory, some of the 
functional languages theory and combination 
of this theories and approaches.  
Settling on logic approach in our research we 
accepted next formal specification languages: 
• RSL (RAISE Specification Language) — 

based on logic of particular functions, 
• VDM – objects are noted by set theory, 

logic expressions based on first-order 
logic, 

• Z – based on a typed first-order theory 
and a set theory 

At the research of languages designed, or 
potentially suitable, for the formal 
specification description that also have a 
rigorous logical theory, we can distinguish 
the following groups of languages: 
• Languages specially designed for use 
as formal specification languages, that 
distinguished by syntax and semantic (due to 
different logic theories from the subset of 
first-order logic) and application domain. 

1 



14  Economy Informatics, vol. 9, no. 1/2009 
 

According to the previous section this 
languages are: 
• VDM, RSL and Z; 
• Declarative programming language – 

logic of functional-logic languages (like 
Prolog, Curry, Mercury); 

• Conceptual graphs as visual knowledge 
representation language; 

• Family of knowledge representation 
languages which can be used to represent 
the concept definitions of an application 
domain. 

• In this article we focus on the formal 
specification languages applied to 
modeling of software information 
systems, consequently all approaches and 
languages will be reviewed from this 
point of view. 

 
2 Requirements, evaluation criteria, 
criticism and request for future systems of 
formal specifications 
Base requirements for modern formal 
specification languages results from 
requirements for specifications itself and 
consists in: unambiguous, completeness of 
specifications, high level of abstraction 
(specification must be free of realization 
algorithms), simplicity of understanding etc. 
According to requirements and purpose of 
formal specification systems can be 
formulated next evaluation criteria which in 
details are described in [1]: 
• Expressive power and level of coding 

required — low level of expressiveness 
requires more skills for knowledge 
expression; 

• Constructability, manageability and 
evolution; 

• Usability of design and presentation; 
• Communicability —  simplicity of 

representation; 
• Powerful and efficient analysis — as a 

compromise with language 
expressiveness. High order logic improve 
expressive power but leads to potential 
impossibility of specification processing 

Criticism of formal specification languages 
represent inadequate or poor level of some 
properties required for users and consist in: 

• Limited scope — most of the languages 
oriented on to the functional description 
of the system; 

• Poor separation of concerns — 
impossibility to distinguish internal 
properties of a system, assumptions about 
environment, properties of the 
application domain; 

• Low-level ontology — excess number of 
details including low-level description of 
elements; 

• Isolation from interconnected lifecycle 
studies of from other  modules of the 
system; 

• Poor guidance of the user in the process 
of design; 

• Poor tool feedback — system only can 
establish problem but not suggest any 
resolutions. 

Based on general requirements, listed lacks 
and problems, wishes for future systems 
presented in [1], we can pick out items 
interesting for us in terms of graph 
representation a possible perspective of 
research. These are possible requirements for 
future systems of formal specification: 
• Integration of different system lifecycle 

phases and relation between 
specifications, reuse of specifications; 

• Possibility of abstraction level separation;  
• Simplicity of design and representation; 
• Different modes of representation (multi-

format specification) — graph, table, 
formal text notation, free text notation, 
diagrams, schemes etc. 

 
3 Review of existing approaches 
Formal specification languages 
Most formal specification language based on 
algebraic model describing a data sets and 
functions on these sets. We examine 
modeling oriented languages such VDM, Z, 
and RSL as the development of VDM 
language, which has the opportunity to 
present in the form of another approach 
based on the properties description. These 
and similar to these languages usually use the 
theory of sets, and have a theoretical 
framework based on semantic of a first-order 
logic. Interpretation of the designed models 



Economy Informatics, vol. 9, no. 1/2009            15 
 

described by these languages can be used for 
translation to one of the programming 
languages or for the analysis of these models. 
VDM is one of the first languages of formal 
specification. Language focused on 
representation of discrete data types such as 
integers, Boolean values, characters, and 
other sets, including lists. Over these types 
can be declared functions described in a 
declarative - a functional style, or in the 
imperative style, designed to process 
conditions. For a given language developed 
many tools that allows to interpret the written 
specification with the possibility of analysis 
and verification of designed models, 
improving the specification, the generation of 
tests for specification. 
Theoretical approach of the Z language is 
similar to VDM, but more focused on the 
description of systems based on the states. 
There were introduced additional expressive 
abilities for describing the state space and 
descriptions of operations for allowed in the 
system. 
RSL - combines a paradigm-oriented 
modeling and description of properties, and 
allows formulating the specification in 
different kinds of representation. 
Specifications can be reused, can be 
parameterized. [2] 
Visual representation in this language group 
focused on the already existing traditional 
system models representation. For example, 
the model in the Z language is a set of states 
and operations, i.e. transitions between 
states. Accordingly to this, the visual 
representation of the model uses existing 
techniques for system state representation, 
for example, Petri nets, state diagrams or 
sequence diagrams. 
Thus, the specialized languages of formal 
specifications narrow the application domain 
and ways of presenting of system models, 
which limits the area of their use. At the 
same time expressive language within the 
domain can be reasonably high. Visual 
representation inherited from the already 
existing methods for representing these class 
systems. 
 

4 Declarative languages 
Declarative programming languages allow 
describing what is required to get a result 
without describing how to implement it. 
Often these requirements apply to the 
methods of description specifications (see the 
requirement of abstraction). Declarative 
languages are divided into two classes - the 
logical and functional. Functional languages 
are based on lambda calculus and have the 
expressiveness of the second-order logic. At 
the same time, using all the expressive 
features of language leads to complication of 
programs for understanding, as it is 
criticized, for example, in [7]. Theory of 
definitional programming, as one of the 
results of further development of declarative 
languages, and presented in [7], today hasn't 
widespread and there were no practical 
applications. Based on the foregoing, as 
expressive, but easily understandable 
language we choose the class of logic and 
functional-logic languages. 
Prolog is the classic of logic programming 
has received not only academicals status 
language, but also as widely used in the 
development of real applications. 
Expressiveness of the language is limited to 
Horn clauses   of first-order predicate logic. 
Improving the expressiveness of the logic 
elements of the second order is possible only 
by the addition of functional features that 
automatically leads to a new language of the 
category of functional-logic languages that 
are described below. Formulas of 
propositional logic that used in the literature 
in analyzing the mechanism of Prolog often 
are visually presented in the form of a 
decision tree. In addition, exist some 
attempts to the visual presentation of 
predicate logic. The proposed methods of 
visual presentation were not received 
distribution. At the same time the popularity 
of Prolog as a language available to ordinary 
business users (i.e. non-programmers and 
non-specialists in formal systems) after the 
project of 5-th generation computers is 
practically extinct, so the new practical 
developments in this area is not maintained. 
In this paper we consider the possibility of 



16  Economy Informatics, vol. 9, no. 1/2009 
 

developing graph representation of Horn 
clauses, i.e. in fact expressions of Prolog 
programs. 
Functional-logical line is represented by 
Curry and Mercury languages. These 
languages have essentially two different 
approaches to the same problem. Curry is the 
development of one of the most powerful 
functional language Haskell, obtained by 
adding the logical properties. Mercury is the 
opposite side and is the development of logic 
programming language Prolog by adding 
functional features. The resulting «fusion» 
increases the expressiveness of the language 
at the expense of functional properties and at 
the same time has a descriptive, more 
accessible to understanding properties of 
predicate logic. 
Ability to compile a program implies that 
presented in the language of declarative 
formal description of the model should have 
some resulting executable functions. Clearly, 
model specification, in most cases should not 
have similar functions. Contrary to the 
requirement of a high level of abstraction 
implies the absence of such low-level 
descriptions. Such elements may appear 
when you create a test function to test the 
constructed model. Ability to create 
mechanisms for verification, and automated 
refactoring to improve the description of the 
model implies the presence of an executable 
mechanism. Part of these functions 
implements a parser development 
environment or compiler system. Specialized 
semantic analyzers, despite their theoretical 
possibility, as we know at the moment are not 
created. 
 
5 Conceptual graphs 
Conceptual graph is a directed graph in 
which vertices are divided into two types of 
concepts and relationships between concepts 
and edges determine the connection between 
objects. The fundamental difference from the 
classical ideas of semantic networks consists 
in the transition of relations in a certain type 
of nodes. In this case, the connection only 
indicate the procedure of connection the 
various nodes into the one formula. The 

theory of conceptual graphs together various 
research relations in semantic networks and 
explicitly declares a set of possible types of 
relationships. Language expressiveness is 
limited to the classical first order logic. The 
advantage of formalism over other methods 
of knowledge representation is based on the 
«integrated» model visualization. 
Like any formalism of knowledge 
representation conceptual graphs are 
intended to describe the high level of 
abstraction. Presentation of the model will be 
available for simple «nontechnical users», 
the graphical representation will improve the 
ergonomics of the description of the formal 
specification. 
 
6 Description logics 
Description logic is the general name for the 
languages of knowledge representation based 
on the idea of concepts and relations between 
them and their use for describing the 
application domain. As formal description 
languages may be used as the formal 
specification languages (i.e. for the 
description of specifications). 
Description logics theory is the result of 
consolidation and development of the two 
paradigms of artificial intelligence domain 
that are semantic networks and frames. The 
theory has three ideas [5]:  
• Basic syntactic elements may be of three 

types - concepts, roles and individuals, 
represented by the next logical elements 
respectively - unary predicates, binary 
predicates and constants.  

• Expressiveness language is limited in the 
sense that the complex structures are built 
from small number of constructors 

• Implicit knowledge of the concepts can 
be automatically derived using inference 
rules  

One of the modern applications of the 
description logics is the ontology language 
for the Internet - Web Ontology Language, to 
be exact its subclass OWL-DL. The principal 
difference between the languages of classical 
logic languages (e.g. Prolog) consists in 
using a hypothesis open world, i.e. if the 
truth of a proposition cannot be proved, then 



Economy Informatics, vol. 9, no. 1/2009            17 
 

the assertion is true, in contrast to the 
hypothesis of a closed world, where the same 
assertion is false, respectively. The syntax of 
OWL is built on the XML markup language, 
and therefore it can be useful as a universal 
language for knowledge translation between 
different systems. 
As one of the directions for the language 
ergonomics increase, community developed 
methods of visual representation, the so-
called Visual OWL. Internet community 
provides review of visual presentations of 
requirements for information systems. 
Existing development in the domain of 
visualization OWL language consist in tree 
representation of XML markup language, or 
a graph similar to the classical semantic 
networks. 
 
7 First-order logic graph representation as 
an evolution direction of formal 
specification languages  
From our point of view the problems 
associated with the requirements of the 
comfortable, user-friendly, multi-view 
presentation, as well as the problem of the 
user's control during the developing process 
are associated with a formalized graphic 

representation. 
A variant of graph representation was 
presented in [3]. The proposed approach first 
of all provides an abstracted, free from 
implicit features of the text, where each 
element of syntax is a separate element of the 
graph. 
Remind that the dictionary of the graph 
language was defined by following sets of 
nodes and edges  
V = {N, E}, where: 
N = {F, P, O, Q} (functional constants, 
predicate constants, logical operators, 
quantifiers); 
E = {C, N, T} (connectivity edge, negation 
of the elements connectivity edge, term 
connectivity edge); 
O = {AND, OR}; 
Q = {EMPTY, Existence, Universal}; 
F, P, T — are named by the corresponding 
formula elements. 
Syntax was defined by the following set: 
VR = {(F, T, F), (F, T, P), (P, C, O), (P, N, O), 
(O, C, O), (O, N, O), (Q, T, F), (Q, T, P)}, 
where the structure in the parentheses consist 
of three relation elements — start node, 
relation edge, finish node. 

 

 
Fig. 1. Graph representation of IsStudent predicate 

 
This graph representation gives easy 
possibility to trace interconnections between 
elements of logic formula. In example 
represented on figure 1 (this example not 
pretends to the sense presence) the 
connection element institute (a variable) is 
presented only once and with a clarity shows 
relation between the objects Studying, 
Institutes and =.   
For example we present in the form of graph 

representation next formula of the first-order 
logic (presume that predicates Human, 
Studying, Institutes are already declared 
separately): 
IF Human(studentName) AND 
Studying(studentName, institute) AND  
=(studentName, institute)   
THEN IsStudent(studentName) 
or in Prolog notation: 
student(StudentName):- 



18  Economy Informatics, vol. 9, no. 1/2009 
 

human(StudentName), 
studying(StudentName, Institute), 

Institute = «University». 
 
8 Evolution of first-order logic graph 
representation  
Was developed a variant of models 
representation presented in the form based on 
Horn sentences and syntax of Prolog 
language.  
In this variant the graph V is defined by the 
following elements: 
N = {L, F, P, O, Q}, 
clause (positive part of the Horn clause), 
functional constants, predicate constants, 
logical operators, quantifiers, 
E = {C, N, T},  
connectivity edge, negation of the elements 

connectivity edge, term connectivity edge 
O = {AND, OR} 
Q = {EMPTY}, 
in this set, as in the Prolog language, presents 
only empty quantifier due to the existing in 
Prolog language notion of the variable 
domain 
L, F, P, T — are named by the corresponding 
formula elements 
A set of the graph syntax from the previous 
section was complemented by the three new 
elements describing relations with the new 
node type «clause» denoted by L: 
VR = {(F, T, L), (O, T, L), (Q, T, L), (F, T, F), 
(F, T, P), (P, C, O), (P, N, O), (O, C, O), (O, 
N, O), (Q, T, F), (Q, T, P)}, 
Hence, the example above can be represented 
by the following graph on the figure 2. 

 
Fig. 2. Prolog graph representation of IsStudent predicate(complex) 

 
In Prolog this phrase can be simplified by the 
next way: 
student(StudentName):- 
human(StudentName), 
studying(StudentName, university). 
According to this we can also simplify the 
graph representation in the figure 3. 
To understand the fundamental differences 
with the textual notation we pay attention to 
the edges names of Term type (detailed 
description see in [3]):  
1. Name of such edges is the necessarily 
property because the edge type «Term» is 

determined only by the presence of the title. 
In this way, also, is determined relation to the 
concrete argument of the predicate (as 
opposed to the argument order in the text 
written in Prolog program) 
2. Name of the argument in the 
predicate «student» differs from the 
argument name of predicates «human» and 
«studying». This is done especially to show 
that the logic relation between two formula 
elements (arguments of different predicates) 
is defined by the connection to the same 
quantifier, not by the same variable name. 

 



Economy Informatics, vol. 9, no. 1/2009            19 
 

 
Fig. 3. Prolog graph representation of IsStudent predicate (simplified) 

 
The proposed approach can and should 
evolve towards a more expressive language, 
as well as in the area of compatibility with 
existing programming languages that have 
effective interpretation tools. Research in the 
area of functional-logic graph representation 
will allow getting a graphical language with 
second-order logic features. 
 
9 Comparison of formal specification 
methods approaches and perspective of 
their integration 
Were compared the methods of describing 
the formal specifications in the context of the 
requirements and criteria that are defined in 
the corresponding part of the article. 
Languages of formal specification through its 
specialization have high expressiveness in 
the selected area aimed at certain classes of 
systems or descriptions of the methodology 
(targeted at the system properties or 
description of its states). At the same time it 
increases the demands on the user's 
knowledge, and specialization of language 
restricts its ability to express knowledge 
about the describing system. Development 
environments or additional tools provide 
abilities for the analysis of the designed 
models, their improvement and verify. 
Methods graphical representation of models 
even more specialized and are essentially the 
adaptation of well-known types of diagrams 
for a particular language. The developed 
models are usually in too much detail and 

focuses on implementation, rather than 
declarative description of the information 
system. 
Expressive representation using declarative 
programming languages affects the 
accessibility, i.e. understanding of the 
designed models and more dependent on the 
user, which is not limited to methods of 
formal specification languages. At the same 
time, the wide used specialized methodology 
can be realized as a certain kind of pattern, it 
will simplify the building process of special 
domain-oriented models. For the analysis of 
the developed model, the user must develop 
mechanisms to describe its validation and 
testing, which will be performed in the 
executable program, although the simplest 
errors can be identified by a development 
environment. Graphical representation of 
declarative languages in spite of some 
existing development is not widely applied. 
This class of programming languages is the 
closest to natural language therefore 
available to study a wide range of users, so 
that the creation of affordable and easy to use 
graphical representations and development 
environment allows using these languages to 
describe systems at different levels of 
abstraction and use design description on 
various stages of software lifecycle.  
The expressiveness of conceptual graphs is 
limited to the expressiveness of first order 
predicate logic. Graph representation in our 
opinion is not enough abstract, as was 



20  Economy Informatics, vol. 9, no. 1/2009 
 

mentioned in [3] although it can be useful for 
knowledge representation in general and as a 
first, i.e. an intermediate, level for computer 
representation of phrases in natural language. 
Languages of the description logics family 
that are oriented on the description of 
properties of the system have different levels 
of abstraction. W3C Community today still 
being developed graphical representation 
which can be declared as a standard. With 
representation in XML, a dialect of OWL can 
be a unified interchange format for 
exchanging data between different 
development systems. Additionally, this area 
is dynamically developing and in the closest 
future there may be the new practical results 
in this direction 
 
10 Idea of approaches integration 
Unifying the different advantages of the 
described methods, based on graph 
representations of functional-logic languages, 
we can formulate the properties of proposed 
future system, or some kind of framework, 
which allow different kinds of users the 
following features: 
• expressive declarative language that 

allows to develop a formal description of 
different interconnected levels of 
abstraction (Curry or Mercury for 
example); 

• visual representation based on graph 
representation of declarative language; 

• variants of graph syntax, focused on 
different application domains and phases 
of design (ideally, according the ideology 
of domain specific languages variants of 
syntax can be designed for every 
complex project). Certain for different 
views will be necessary to design also the 
mechanism of translation from one 
representation to any other necessary 
format. As the standard alternative format 
can be, for example: the documentation 
(textual or algorithm diagram 
representation of requirements), 
specification (representation in the form 
of block diagrams), interface (the 
relationship of elements of input / 
output), data structure (relational 

database diagram), etc.; 
• as a consequence of the preceding 

paragraph availability for use by different 
categories of users in the process of 
software developing using translation 
mechanisms into a variety of 
representations (specialized or vice versa 
general form in the language of 
conceptual graphs); 

• development environment with properties 
of online control of the syntax of 
designed specifications, possible 
semantic analysis of the contradictions 
and redundancy; 

• use of related or external specifications, 
in the form of black boxes and called as 
existing propositions (may be described 
by the predicate); 

• intersystem interactions based on 
developed standards for knowledge 
representation (e.g. based on XML and  
OWL). 

 
11 Conclusion 
The result of analysis of different approaches 
to the formal representation of specifications 
can be defined as necessity to establish 
methods presentation and writing of 
specifications includes the following features 
implemented in different approaches: 
• accessibility to the user based on the 

functional-logical representation of 
knowledge  

• expressiveness of the language on the 
level of second order logic (based on 
properties of functional languages)  

• the possibility of automated analysis, 
conversion and translation into other 
languages developed a formal model  

• ergonomic presentation of the model 
based on graphs and their graphical 
realization  

• ability to describe different levels of 
abstraction 

• formal unified format for interchange 
between different development systems 

It was presented the idea of consolidation 
different approaches to obtain variant which 
will have distinctive positive features of 
different formal specification approaches. 



Economy Informatics, vol. 9, no. 1/2009            21 
 

A variant of graph representation logic 
programming language Prolog phrases, based 
on Horn clauses, was proposed. 
Proposed to research possibility of: 
• creating an integrated approach based on 

proposed graph representation extending 
it to the class of functional-logic 
languages; 

• defining in the developed system a 
method of translation domain oriented 
description exploring the existing 
patterns and approaches; 

• defining the interpretation tools for  
verification and analyzing the designed 
specifications. 

 
References 
[1] A. Van Lamsweerde, “Formal 

Specification: a Roadmap”, 
Département d’Ingénierie Informatique, 
Université catholique de Louvain. 

[2] D. Bjørner and M. C. Henson, Logics of 
Specification Languages, Springer, 
2008. 

[3] I. Orlovski, N. Pelin and A. Miron, “A 

Variant of Vocabulary and Syntax of 
Graphical Representation Method of 
First Order Predicate Logic Formulas”, 
in Economy Informatics, Vol VIII, No. 1, 
2008. 

[4] D. Partridge, Artificial Intelligence and 
Software Engineering: Understanding 
the Promise of the Future, AMACOM, 
1998. 

[5] F. Baader, The Description Logic 
Handbook, Cambridge University Press, 
2003. 

[6] N. Duglas, T. Viguer, N. Leveson and M. 
A. Storey, “On the use of visualization 
in formal requirements specification,” 
Proceedings of the 10th Anniversary 
IEEE Joint International Conference on 
Requirements Engineering, 2002, pp.71-
80. 

[6] O. Torgersson, “A Note on Declarative 
Programming Paradigms and the Future 
of Definitional Programming,” 
Proceedings of Das Wintermote 96, 
1996.

 
Ian ORLOVSKI has a master of science in Information Systems. Today is a 
graduate student at the Technical University of Moldova. Research in the 
domain of logic programming, knowledge representation and application of 
artificial intelligence methods since year 2000. 


